CV Data Sets


2025

Robots


2026





4D Reconstruction

Dataset Specifications

Dataset Data Type Depth Map Semantic / Mask Camera Pose Temporal Length Approx Size
PointOdyssey v1.2 (Stanford, ICCV 2023) Synthetic, long-term deformable human/animal scenes, 30 fps, 540Γ—960 Dense depth maps and surface normals per frame Instance segmentation and visibility mask Full camera intrinsics and extrinsics ~2 000 frames per video Γ— 159 videos (β‰ˆ 1 h 30 min) β‰ˆ 300 GB
Dynamic Replica v2 (Meta AI, CVPR 2023 DynamicStereo) Synthetic RGB-D videos of human–object interactions Dense depth maps Semantic segmentation masks Full camera poses ~300 frames (β‰ˆ 10 s) per video Γ— 524 videos (β‰ˆ 1 h 15 min training split) β‰ˆ 1.7 – 1.8 TB
Kubric (Google Research 2022) Procedural synthetic multi-object MVS generator Per-pixel depth and normals Segmentation and instance masks Intrinsics and extrinsics available Short clips (β‰ˆ 24 frames average) β‰ˆ 1 TB
MPI-Sintel (Complete) Blender-rendered movie frames with optical-flow ground truth Depth and optical flow maps Semantic layers (albedo, shading) Camera poses provided 23 training + 12 test sequences (β‰ˆ 1 min total) β‰ˆ 5.3 GB
TUM-Dynamics (RGB-D SLAM Benchmark 2012) Real RGB-D video sequences with moving objects Depth maps from Kinect sensor No semantic mask provided Ground-truth camera poses 2 – 3 min per sequence Γ— 15 – 20 sequences (β‰ˆ 1 h total) β‰ˆ 60 GB
ETH3D (SchΓΆps et al., CVPR 2017) Real multi-view stereo benchmark (static scenes) Ground-truth depth maps No semantic mask provided Calibrated multi-view poses Static scenes (~10 – 50 images per scene) β‰ˆ 25 GB





NeurIPS 1987–2024

Period Core Theme Representative Focus
1987–1993 Neuro-inspired Foundations Neural computation, Hebbian learning, Hopfield networks
1994–2000 Statistical Learning Era SVM, VC theory, kernel methods
2001–2009 Probabilistic Modeling Graphical models, Bayesian inference, LDA, GP
2010–2014 Representation Revival Deep belief nets, optimization, sparse coding
2015–2017 Theoretical Consolidation Learning theory, optimization, multi-agent RL
2018–2019 Deep Learning Formalization Neural ODEs, distributed optimization, RL theory
2020–2021 Scaling Reflection GPT-3, robustness, evaluation metrics
2022–2023 Diffusion + LLM Revolution Generative diffusion, alignment, safety
2024β†’ Multimodal + Reasoning Integration Vision-language models, efficiency, real-world benchmarks










Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • Orgo.ai - 25
  • Model Structures - 25
  • Story Series
  • Knowledge Map